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Radiatively cooled shocks in jets at the MAGPIE pulsed- Imperial College
power facility London

Pulsed power driven foil produces a supersonic jet

Obstacle

The jet collides with a small obstacle
The resulting shock is clumpy
We believe this is caused by radiative cooling instabilities

These experiments are relevant for understanding the
complex structures seen in protostellar jets




New class of Laboratory Astrophysics Experiments:
Application to Radiative Accretion Processes around Neutron Stars
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Particle-in-cell simulations of laser-driven, ion-scale
magnetospheres in laboratory plasmas (#09)

Mini-magnetosheres in laboratory*

In the Large Plasma Device
(LAPD), a laser was focused into a
plastic target, releasing a driver
against a magnetized background
plasma.

By inserting a current loop, a mini
magnetosphere was created in the
laboratory.
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*Schaeffer;, D. B. et al. Physics of Plasmas 29 (4), 042901 (2022)
**Cruz, F. D. et al. Physics of Plasmas 29 (3), 032902 (2022)

F.D. Cruz | HEDLA 2022, Lisbon, Portugal | May 23rd,2022



(@ @ Experimental results from a pulsed-power platform to study

UMELLORA, accretion-driven astrophysical outflows
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H. Hasson et al., U. of Rochester Poster #10
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LISBOA

Kinetic models in neutron star charge starved vacuum gaps W TECNICO

E. Figueiredo, 1. Grismayer; L. O. Silva
Rotation axis, ()

* Exponential production of e™ — e~ plasma

* Analytical model of the cascade behaviour
from first principles

Vacuum gap

E-B#0 e Allows extension to other astrophysical scenari
and laboratory experiments

. Neutron star surface

Enzo Figueiredo | HEDLA 2022 | May 23,2022



Time Resolved Studies of Warm Dense Titanium

TECNICO
W LISBOA

The ill defined nature of measurements in Warm Dense States and the many uncertainties favours a statistical approach, for which big data sets are needed.

Two Temperature Model

Results

Isochorically heated warm dense Titanium, probed near the

M3 3 absorption edge .
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: : : : TECNICO
Direct laser acceleration at varying plasma density W LISBOA

Conserved quantities

Electrons can be accelerated by the Direct Laser
Acceleration only up to the maximum energy 7, ., defined Constant Varying

by the plasma density and the integral of motion density density

% X

% 9

At plasmas with density gradient the
maximum achievable energy of electrons
s defined by the initial conditions at the
moment of resonance

Robert Babjak | HEDLA 2022 | May 23,2022



. : . . TECNICO
Poster #19 : Positron acceleration in a short distance ? w LISBOA

Wakefield acceleration! Multi-PetaVWatt laser?
Plasma density (8.0 x 10'® cm™3) \
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Strong-field QED features in the leptonic (e-e*) beam collision []

Background and motivation

¢ | eptonic (electron-positron) beam collision provides a
platform where various fundamental physics can be studied.

¢ Beam collision in the mild QED regime (y, < 1) has been

studied [2], but the study on the strong QED regime (y, > 1)
is still in its infancy [3].
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[2] F. Del Gaudio, et al., PRAB, 22,023402 (2019). [3] Matteo Tamburini, Sebastian Meuren, arXiv:1912.07508v2 (2020). Wenlong Zhang | HEDLA 2022, Lisboa, Portugal | May, 2022

Applications: Theory &
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Dedicated collision config.
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Electron beam and photon distribution functions after a laser-electron scattering {Fscé\ldgﬂ
analytical model accounting for 3D focusing geometry and non-ideal spatio-temporal synchronization

Motivation Spectra in focused scattering

Gaussian: v, = 5000, A = 0.8 pym
' ' " ' [ — ' L Z 6 — ’
Nonlinear Compton Scattering (y-ray emission) and Breit-Wheeler ete™ pair Short beam L < zr 0280 = 12, Tiee = 50 w, ', R = Wy

production will be common in near future laser facilities. . || oy
e~ beam | @% 2
| > y © ;

Standard numerical modelling of these
experiments Is accomplished using heavy

3D PIC-OQED simulations. In Classical Radiation Reaction
regime we can exactly predict the

We develop a semi-analytical model for the final spectrum. - 20 22 24

E.|GeV
final photon and electron spectra to accelerate [GeV]
experiment design and interpretation. We can reconstruct the final e~ spectrum in focused scattering

(Gausslan laser) by linear combination of Plane-Wave datasets.
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We can apply @o,eff distributions
to generalize models beyond the
Plane Wave.
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Oscar Amaro | HEDLA | May 23,2022



LISBOA

Synchrotron cooling as a progenitor of kinetic instabilities W TECNICO

and coherent radiation. Pablo . Bilbao & Luis. O. Silva

Synchrotron cooling in B fields analytical model Simulations confirm our analytical results
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Particles undergoing Synchrotron cooling cool down at
different rates
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Transient Relativistic Plasma Grating to Tailor High-Power
Laser Fields, Wakefield Plasma Waves, and Electron Injection

Laser wakefield acceleration

> Plasma wakefield wave driven by an ultrashort laser pulse
> GV/cm acceleration gradients

> |njection techniques: control of electron trapping into the wake
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Collision of two laser pulses at 10°

Transverse plasma electron grating responsible
Role switching of the driver and injector pulses
Mutual injection into both wakefields
Acceleration in later periods

SR \‘LCC C C a

for the injection

Dominika Maslarova, Czech Academy of Sciences, HEDLA 2022
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