

		-	
#03 D. Russell	#04 K. Sakai	#08	
Radiatively cooled shocks in jets at the MAGPIE pulsed-power facility	Local measurements of laser-driven electron- scale magnetic reconnection	of Astrop Applie Acc Arou	
#12 E. Figueiredo	#13 S. Antunes	#18	
Kinetic models in neutron star charge starved vacuum gaps	Time resolved opacity maps of warm dense Ti: a Bayesian search of coupling parameters	Direct enha pl	
	#22 O. Amaro Electron beam and photon distribution functions after a laser- electron scattering: analytical model accounting for 3D focusing geometry and non-ideal spatio- temporal synchronization	#2 Synchi prog instabi	

Flash Poster Presentation

V. Tranchant Class of Laboratory hysics Experiments: cation to Radiative retion Processes nd Neutron Stars B R. Babjak laser acceleration ancement using asma density modulations	#09 F. Cruz Particle-in-cell simulations of laser- driven, ion-scale magnetospheres in laboratory plasmas #19 B. Martinez Ultra-high-intensity lasers for channel acceleration of positrons	#10 H. Hasse Experimental results a pulsed-power plate to study accretion-or astrophysical outfle #21 W. Zhan Strong-field QED feat in the leptonic beat collision
5 P. Bilbao rotron cooling as a renitor of kinetic lities and coherent radiation	#31 D. Maslarova Transient Relativistic Plasma Grating to Tailor High-Power Laser Fields, Wakefield Plasma Waves, and Electron Injection	

Radiatively cooled shocks in jets at the MAGPIE pulsedpower facility

Pulsed power driven foil produces a supersonic jet

The jet collides with a small obstacle

The resulting shock is clumpy

We believe this is caused by radiative cooling instabilities

These experiments are relevant for understanding the complex structures seen in protostellar jets

Imperial College london

New class of Laboratory Astrophysics Experiments: Application to Radiative Accretion Processes around Neutron Stars

Commissariat à l'énergie atomique et aux énergies alternatives

Cea

Victor Tranchant

Particle-in-cell simulations of laser-driven, ion-scale magnetospheres in laboratory plasmas (#09)

Mini-magnetosheres in laboratory*

In the Large Plasma Device (LAPD), a laser was focused into a plastic target, releasing a driver against a magnetized background plasma.

By inserting a current loop, a mini magnetosphere was created in the laboratory.

Magnetic field streak plot at x = 0: Current density streak plot at x = 0:

Overall dynamics of PIC simulations**

To validate the experimental results, 2D particle-in-cell (PIC) simulations were performed with OSIRIS.

Multiple parameters scans showed the importance of each system parameter in the magnetospheric structures observed.

UCLA

The simulation results are consistent with the LAPD experiments:

*Schaeffer, D. B. et al. Physics of Plasmas 29 (4), 042901 (2022) **Cruz, F. D. et al. Physics of Plasmas 29 (3), 032902 (2022)

F. D. Cruz | HEDLA 2022, Lisbon, Portugal | May 23rd, 2022

Experimental results from a pulsed-power platform to study accretion-driven astrophysical outflows

H. Hasson et al., U. of Rochester

Load design

modified cylindrical wire array

disk -> jet transition

Velocity measurements

Imaging

Vertical front tracing: ~100 km/s

Radial Thomson scattering fits: ~100 km/s

XUV Above view: Filled vs hollow (rotating) outflows

Side-on shadowgraph: Filled vs hollow (rotating) outflows

Kinetic models in neutron star charge starved vacuum gaps E. Figueiredo, T. Grismayer, L. O. Silva

• Exponential production of $e^+ - e^-$ plasma

• Analytical model of the cascade behaviour from first principles

• Allows extension to other astrophysical scenarii and laboratory experiments

Time Resolved Studies of Warm Dense Titanium

The ill defined nature of measurements in Warm Dense States and the many uncertainties favours a statistical approach, for which big data sets are needed.

Direct laser acceleration at varying plasma density

Electrons can be accelerated by the Direct Laser Acceleration only up to the maximum energy γ_{max} defined by the plasma density and the integral of motion

Conserved quantities

At plasmas with density gradient the maximum achievable energy of electrons is defined by the initial conditions at the moment of resonance

Poster #19 : Positron acceleration in a short distance ?

Positrons are created by an accelerator

^IS. Corde et al, Nature, 524 442-445 (2015)

Positrons are created by the pulse

²B. Martinez et al, to be submitted

Strong-field QED features in the leptonic (e⁻e⁺) beam collision ^[1]

Background and motivation

 Leptonic (electron-positron) beam collision provides a platform where various fundamental physics can be studied.

Beam collision in the mild QED regime ($\chi_e \lesssim 1$) has been studied ^[2], but the study on the strong QED regime ($\chi_e \gg 1$) is still in its infancy ^[3].

$$\chi_e = \frac{1}{E_s} \sqrt{\left(\gamma \vec{E} + \frac{\vec{p} \times \vec{B}}{mc}\right)^2 - \left(\frac{\vec{p} \cdot \vec{E}}{mc}\right)^2} \simeq \frac{2\gamma E_\perp}{E_s}$$

$$W_{\omega} = \frac{\alpha}{\sqrt{3}\pi\tau_{c}\gamma} \left[\int_{b}^{\infty} dq K_{5/3}(q) + \frac{\xi^{2}}{1-\xi} K_{2/3}(b) \right]$$
$$b = \frac{2}{3\chi_{e}} \frac{\xi}{1-\xi}$$

Photon spectrum $s_{\omega}(\xi, r)$ emitted by a single particle

$$s_{\omega}(\xi, r) = \int_{-\infty}^{\infty} W_{\omega} dt$$

$$s_{\omega}(\xi, r) = \frac{\alpha \sigma_{z}}{\sqrt{6\pi} \tau_{c} \gamma c} \left(k_{5/3} + k_{2/3} \frac{\xi^{2}}{1 - \xi} \right) C_{b}^{-2/3} \exp(-C_{b}) \cdot U \left[\frac{1}{2}, \frac{5}{6}, C_{b} + p_{0} \right]$$

$$* \text{ Fitting constant: } k_{2/3} = 1.23 \text{ and } k_{5/3} = 2k_{2/3}$$

$$C_{b} = \frac{2}{3\chi_{emax}} \frac{\xi}{1 - \xi} \frac{F(r_{max})}{F(r)}$$

[1] W. L. Zhang, T. Grismayer, L. O. Silva, in preparation, 2022. [2] F. Del Gaudio, et al., PRAB, **22**, 023402 (2019). [3] Matteo Tamburini, Sebastian Meuren, arXiv:1912.07508v2 (2020).

Wenlong Zhang | HEDLA 2022, Lisboa, Portugal | May, 2022

Electron beam and photon distribution functions after a laser-electron scattering analytical model accounting for 3D focusing geometry and non-ideal spatio-temporal synchronization

Motivation

Nonlinear Compton Scattering (γ -ray emission) and Breit-Wheeler e^+e^- pair production will be common in near future laser facilities.

Standard numerical modelling of these experiments is accomplished using heavy 3D PIC-QED simulations.

We develop a semi-analytical model for the final photon and electron spectra to accelerate experiment design and interpretation.

Particle distribution in laser field

In focused lasers *:

particles interact with different laser peak fields

We can apply $a_{0,\text{eff}}$ distributions to generalize models beyond the Plane Wave.

 $a_{0,\text{eff}} = a_0$ focus $a_{0,\text{eff}} < a_0$ $a_{0,\mathrm{eff}}(z)$ beam

* Óscar Amaro and Marija Vranic 2021 New J. Phys. 23 115001

Spectra in focused scattering

Short beam $L \ll z_R$

Óscar Amaro | HEDLA | May 23, 2022

Synchrotron cooling as a progenitor of kinetic instabilities and coherent radiation. Pablo J. Bilbao & Luis. O. Silva

Synchrotron cooling in B_0 fields analytical model

Particles undergoing Synchrotron cooling cool down at different rates

$$\dot{\mathbf{p}}_{RR} = -kB_0^2 \frac{p_\perp^2}{\gamma} \mathbf{p}_{RR}$$

How does this affect collective plasma dynamics?

$$\frac{\partial f}{\partial t} + \dot{\mathbf{p}}_{RR} \cdot \nabla_p f + f \nabla_p \cdot \dot{\mathbf{p}}_{RR} = 0$$

So we demonstrate analytically that a Landau population inversion takes place for any arbitrary momentum distribution

Simulations confirm our analytical results

Transient Relativistic Plasma Grating to Tailor High-Power Laser Fields, Wakefield Plasma Waves, and Electron Injection

Laser wakefield acceleration

- Plasma wakefield wave driven by an ultrashort laser pulse
- GV/cm acceleration gradients
- Injection techniques: control of electron trapping into the wake

New optical injection method

- Collision of two laser pulses at 10°
- Transverse plasma electron grating responsible for the injection
- Role switching of the driver and injector pulses
- Mutual injection into both wakefields
- Acceleration in later periods

Dominika Maslarova, Czech Academy of Sciences, HEDLA 2022

#03 D. Russell	#04 K. Sakai	#08
Radiatively cooled shocks in jets at the MAGPIE pulsed-power facility	Local measurements of laser-driven electron- scale magnetic reconnection	New C Astropl Applic Acc Arou
#12 E. Figueiredo	#13 S. Antunes	#18
Kinetic models in neutron star charge starved vacuum gaps	Time resolved opacity maps of warm dense Ti: a Bayesian search of coupling parameters	Direct enha pl
	#22 O. Amaro Electron beam and photon distribution functions after a laser- electron scattering: analytical model accounting for 3D focusing geometry and non-ideal spatio- temporal synchronization	#2 Synchi prog instabi

Flash Poster Presentation

V. Tranchant Class of Laboratory hysics Experiments: cation to Radiative retion Processes nd Neutron Stars B R. Babjak laser acceleration ancement using asma density modulations	#09 F. Cruz Particle-in-cell simulations of laser- driven, ion-scale magnetospheres in laboratory plasmas #19 B. Martinez Ultra-high-intensity lasers for channel acceleration of positrons	#10 H. Hasse Experimental results a pulsed-power plate to study accretion-or astrophysical outfle #21 W. Zhan Strong-field QED feat in the leptonic beat collision
5 P. Bilbao rotron cooling as a renitor of kinetic lities and coherent radiation	#31 D. Maslarova Transient Relativistic Plasma Grating to Tailor High-Power Laser Fields, Wakefield Plasma Waves, and Electron Injection	

